A novel computational modelling to describe the anisotropic, remodelling and reorientation behaviour of collagen fibrres in articular cartilage
نویسندگان
چکیده
In articular cartilage the orientation of collagen fibres is not uniform varying mostly with the depth of the tissue. Besides, the biomechanical response of each layer of the articular cartilage differs from the neighbouring ones, evolving through thickness as a function of the distribution, density and orientation of the collagen fibres. Based on a finite element implementation, a new continuum formulation is proposed to describe the remodelling and reorientation behaviour of the collagen fibres under arbitrary mechanical loads. The cartilaginous tissue is modelled based on a hyperelastic formulation, being the ground isotropic matrix described by a neo-Hookean law and the fibrillar anisotropic part modelled by a new anisotropic formulation introduced for the first time in the present work, in which both reorientation and remodelling are taken into account. To characterize the orientation of fibres, a structure tensor is defined to represent the expected distribution and orientation of fibres around a reference direction. The isotropic and anisotropic constitutive parameters were determined by the good validation of the numerical models with the experimental data available from the literature. Considering the effect of realistic collagen fibre reorientation in the cartilage tissue, the remodelling algorithm associated with a distribution of fibres model showed accurate results with few numerical calculations.
منابع مشابه
Study of Expression Level of Cartilage Genes in Rat Articular Chondrocyte Monolayer and 3D Cultures using Real Time PCR
Purpose: to compare the expression level of certain genes related to cartilage and non-cartilage tissues at monolayer and alginate cultures derived from rat articular cartilage. Materials and Methods: Articular cartilage was harvested from knee joints of 10 male rats and was digested using enzymatic solution consisting of 0.2% collagenase I and 0.1% pronase. Released chondrocyte were then plate...
متن کاملContribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage.
The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth-dependent arcade-like structure in adult animals. Current understanding on th...
متن کاملCostal Versus Articular Chondrocytes in Alginate Three-Dimensional Cultures
Given the difficulties in accessing articular cartilage as a source of chondrocytes to be used in fabricating cartilage constructs, alternative sources are required. The present study examined chondrocytes from costal cartilage for their suitability in cartilage tissue engineering. Chondrocytes isolated from rat knee and rib hyaline cartilage were separately mixed with alginate and placed in a ...
متن کاملQuantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture
Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...
متن کاملComparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro
Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...
متن کامل